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Programming Mechanical Simulations

Joseph K. Kearney, Stuart Hansen, and James F. Cremer r " r--

Abstract uc
This paper examines the control of complex physical objects in simulation. We intro-

duce a programming paradigm that allows a simulation to be treated as a multi-level con-
straint solver. The control programmer is given the ability to specify constraints on the con-
trolled response of mechanisms and to conditionally change these constraints dependent on
the state of system. The approach facilitates the development of model-based, event-driven
control programs. The usefulness of the paradigm is demonstrated through the simulation of
a hopping robot.
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1. Introduction
Computer simulation promises to have a dramatic influence on the study of mechanical

systems and the interaction between humans and machines. The increasingly widespread
use of dynamic simulation in computer-aided design, mechanical analysis, and computer
animation has created new demands for control capabilities [2-6,18,19,26,28,29,31]. Most
simulation systems provide only rudimentary means to program controlled motions. Many
of the interesting problems in design and animation involve the simulation of complex,
adaptive mechanisms such as walking robots or dexterous robot hands. Flexible, open sys-
tems are needed to allow experimentation with control methodologies for these problems.

This paper examines mechanical simulation as a programming problem. We will focus
on tools that allow the user to define the controlled response of devices and the state depen-
dent interactions between objects. A conceptual framework for programming mechanical
simulations is presented. The programming paradigm is based on a view of the simulator as
a multi-level constraint solver. Simulation is cast as a problem of solving a sequence of
dynamic constraints on the attributes of models of physical objects. Constraints due to
mechanical considerations, such as joints between bodies, and constraints due to control
considerations, such as guided movements, are treated in a uniform fashion.

The set of motion constraint equations is derived from three sources. First, a base set
of equations modeling the fundamental laws of motion and the mechanical connections

40 I between objects is automatically formulated from a model definition. Secondly, the base set
W" of equations may be reformulated during the course of a simulation to accommodate chang-am ing relationships among objects as new contacts are made and old contacts are broken.

now Lastly, control routines may influence the composition of the set of motion equations. The
EM user conducting the simulation models control constraints by programmatically adding and

deleting named equations to the set of motion equations.

In many simulation systems including ADAMS, DADS, and SD/FAST [7,9,13], motion
constraints are predetermined by a model of the mechanism and remain unchanged during
simulation. By allowing conditional reformulation of motion constraints and by incorporat-
ing control constraints into the set of motion equations, the power and expressiveness of
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simulation programs is significantly extended. However, the constraint restructuring must
be accomplished in a carefully disciplined manner to avoid compromising the integrity of
the simulation. We present a regimen under which the flexibility of constraint editing is
achieved without disrupting the basic integration process.

In section 2, mechanical simulation is presented in the constraint programming frame-
work. Higher order constraints are introduced as a means to accommodate changing rela-
tionships between objects in section 3. Constraint-based control programming is introduced
in section 4. In section 5, event-driven control programming is illustrated with repetitive
hopping.

2. Mechanical Simulation
Mechanical simulation can be viewed as a process of iterative constraint satisfaction.

To a first approximation, most mechanical simulators proceed as follows:
(1) Given positions, velocities, and forces acting on all objects, a set of constraint

equations governing the motions of objects are solved to determine accelerations.
(2) New positions and velocities are determined by integrating the accelerations over

a small time interval.
(3) The simulation clock is incremented and the process is repeated.

The nature of the motion constraints that can be expressed, the equation solving algorithm,
and integration method vary considerably across simulation systems. In our presentation,
we will try to focus on characteristics shared by a large number of systems. We will illus-
trate points with the Newton simulator [8,121. In this section, we consider simulation of
uncontrolled devices with a constraint set that remains unchanged during the simulation.

To simulate the motion of a mechanical device, we first need a model describing its
component bodies and the constraints on the motions of bodies. In Newton, the primitive
objects are rigid solids. Primitive objects are joined by hinges to form composite objects. A
hinge constrains the relative motion of two objects. As an example of a simple, composite
object we consider a pendulum consisting of a cuboid attached to a fixed base by a spherical
hinge. The definition of the pendulum model in Newton's model description language is
shown in Fig. 1.

The model must contain sufficient information to determine the mass and inertial pro-
perties of the bodies and the constraints on body motions. A simulation system should pro-
vide a library of hinges that impose a variety of motion constraints. Common hinges include
bracket, translational, revolute, universal, spherical, and planar. Each hinge constrains some
combination of relative motions between two objects or between an object and an inertial
reference frame. The spherical hinge in the pendulum example constrains a point on the
pendulum to be coincident with a point on the base.

From the model definition, a system of time-varying linear equations constraining the
instantaneous motion of every body can be derived. These motion equations relate
accelerations of bodies to the forces and torques on the bodies dependent on object positions
and velocities. Given the positions and velocities of all bodies at time t, positions and velo-
cities at time t + At are found by solving the motion equations for Rccelerations and
integrating from previous states. Given initial positions and velocities, this process is
iterated to simulate motion over an interval of time.

Even very simple models can lead to large, complex sets of motion equations. All of
the popular mechanical simulators relieve the user from the responsibility of deriving these
equations [7-9,12,131. These systems provide a modeling interface that allows a user to
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primitive rod (x,y,z)
begin

properties: (density: 1.0, color: 'red');--
geometry: cuboid(xy,z)

where begin
top hiingepoint: (0.0,y/2.0,0.0);
center: (0.0,0.0,0.0);

ed bottom hingepoint: (0.0,-y/2.0,0.0)

dynamics:;
control:;
interference:;

end

composite linkage
components
hi: ball.and-socket;
rodl: rod (1.0,4.0,1.0);
base: rod (8.0,1.0,1.0)

structure

join rudi to base with hi matching
(bottm-hingepoint top hingepoint);

begin
dynamics:;
interference:;

end;

configuration linkage control
components

linkage: linkage
con7I

torque linkagcehl linkage.torque
state

linkage.base: ((0.0, 0.0, 0.0) (1.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0));
linkage.rodl: ((0.0, 2.5, 0.0) (1.0, 0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0))

FIg. 1. The Newton model definition for a pendulum.
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symbolically define component parts and their interconnections. The simulation system will
then create the necessary quantities and derive the constraint equations.

As a simple demonstration, we step through the derivation of the motion constraint
equations for the pendulum example with the approach used in Newton. Newton supports
incremental assembly of motion constraints. A skeletal representation is created for each
primitive body. This representation includes values for object properties including density
and, when necessary, material properties that enable computation of coefficients of restitu-
tion and friction. The representation contains a geometric model of the body that is used by
Newton to compute properties such as object volume, mass, and inertia and for collision
detection and contact classification. The representation also includes slots for kinematic
and dynamic quantities including position, velocity, acceleration, force, and torque. Ini-
tially, each body inherits two simple equation schemata representing the Newton and Euler
equations of motion. For body i these equations have the form:

mi:. =0 (1)

Ji 6i + wi x Ji wi = 0, (2)

where
mi is the mass of object i,

ri is the three dimensional acceleration vector for the center of mass of object i,

Ji is the 3-by-3 inertia matrix for object i,

oWi is the three dimensional angular velocity vector for object i, and

6oi is the three dimensional angular acceleration vector for object i.
Next, each hinge is considered and equations are derived to enforce the motion constraints
imposed by the hinge. The spherical hinge linking the pendulum and base imposes a
kinematic constraint that a distinguished point on one body, called the hinge point, be coin-
cident with a hings point on another body. If the hinge point for body i is identified by a
vector c, from the center of mass ri of body i to the hinge, then a spherical hinge constraint
requires that

r + c = r2 +C (3)

where for compactness the pendulum and base are referenced by indices 1 and 2, respec-
tively.

In Newton, position constraints are enforced indirectly by adding the second derivative
(with respect to time) of the position constraint equation to the set of motion equations. For
a spherical hinge, the second derivative equation ensures that the hinge points have the
same acceleration. The motion constraint equation corresponding to the spherical hinge
position constraint (3) is

r, +4 lXCl 4I +CX(OIXCl) = F2 + 6 2 XC2 + C 2 X(CO2 XC2). (4)

The Newton and Euler rqautions for the connected bcdie: must also be modified to con-
sistently reflect the constraint force fhinge required to satisfy the kinematic hinge constraint
(4). A new force quantity is created to represent the constraint force and the Newton and
Euler equations are augmented to give:

m 2W2 = fhige, (5)

J262 + (02X J 2w 2 = C2 xfhinge, (6)

mir1 = -fhinge. (7)
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and

Ji 1 + O)IxJ1.01 = Clx-finge. (8)

This general process can be used for a wide variety of kinematic constraints. Non-
kinematic constraints, such as springs and dampers, can be handled in a similar fashion. If
the action of gravity is to be modeled, a gravitational force term m, g can be added to each
object i's Newton equation.

The motion constraint equations may be derived and represented in a variety of ways.
Recently developed algorithms for evaluating sets of constraint equations can yield real-
time simulation performance for moderately complex devices [9,14,30]. Many systems for-
mulate the equations of motion once and compile them into a form suitable for quick
evaluation. A disadvantage of this approach is that it is very difficult to modify the motion
constraints during the course of a simulation. Newton represents the motion constraint
equations symbolically. The pertinent equations are assembled and solved on each iteration.
This facilitates inspection and incremental modification of motion constraints.

The method of analysis outlined above may introduce unacceptable errors into the
simulation. Numerical error in the solution of the second order motion equations will lead to
errors in positions and velocities. As this error accumulates the underlying position con-
straints may be significantly violated. Over the course of a simulation, the deterioration
may seriously corrupt the integrity of the simulation. Many simulations system include a
correction stage in the integration cycle to assure that positions and velocities do not drift
too much.

The method of integration has an important influence on the accuracy and speed of a
simulation. More economical methods use a state history to predict motions from previous
positions and velocities. Tradeoffs between accuracy and speed can be made; in general,
smaller time steps lead to more accurate results at the cost of greater computation and
longer run times. Sophisticated schemes estimate the error in previous simulation steps and
adaptively adjust the size of the time step to balance accuracy and speed. At the beginning
of a simulation, there is no history on which to base predictions or error estimates and
hence, simpler, more short-sighted methods must be used to get started. In Newton, a
fourth-order Runge Kutta integration method that requires no history is used to initiate the
simulation. After a sufficient history is built, Newton switches to the more economical
fourth-order, adaptive-timestep Adams-Moulton integration method.

3. Events: Higher-Order Constraints
As physical objccs move, conditions may occur that cause the relationships among

bodies to change. For example, a contact hinge exists only while there is a compressive
contact force between the connected objects. The support relation between a table and an
object on its top surface behaves in this way. If an object rolls off the table or is lifted from
the t-ble, the support relationship no longer holds. The structural properties of joints may
also limit the forces they can withitand. Excessive force on the joint may cause it to break.

The changing relations among physical objects can be modeled in simulation as state-
dependent constraints. Contingent on the values of quantities, new constraints may be
created and existing constraints may eliminated from the constraint set. A rule that con-
strains the composition of the constraint set is called a higher-order constraint in constraint
programming [16). These constraints on constraints are guarded by boolean expressions of
the state variables. They may cause creation of new quantities, destruction of old quantities,
or reformulation of the existing network, including the addition or deletion of higher-order
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constraints.
For example, consider an object that comes to rest on a table. We model the new con-

tact relation by establishing a temporary hinge. To simplify our example, we will assume
the object touches the surface of the table at a single point. A new quantity is created to
represent the constraint force at the hinge between the object and the table. A new equation
is created to represent the constraint on the relative motions of the two bodies. A higher-
order constraint is also created to monitor the conditions for continued existence of the
hinge. When the conditions for existence no longer hold, the hinge constraint equation is
removed from the constraint set, the constraint force quantity ceases to exist, and the hinge
monitor is deleted.

The Newton simulator has a general mechanism for detecting and resolving excep-
tional events that require reformulation of the motion constraints. An event consists of a
triggering condition, an isolation predicate, and a resolution method. At any point during
the course of a simulation, every event is in either an active or inactive state. At the begin-
ning of each integration step, the triggering conditions for every active event are tested.
When the triggering condition is satisfied in the current state, an occurrence of the event has
been detected. For some events, it is important to precisely determine the time of their
occurrence. The validity of the resulting state may critically depend on isolating the instant
at which the event happened. For example, when two rigid objects collide it is important to
accurately determine the moment at which their surfaces first make contact to avoid inter-
penetration. The isolation predicate specifies the tolerance accepted in the timing of the
event. The tolerance is specified as an acceptable error in some critical variable associated
with the occurrence of the event. For many events, the error in the time of occurrence is
used. However, other parameters may be appropriate for some events. For example, the
time of collision can be isolated by specifying a tolerance on the separation or depth of
penetration of the two objects.

After the time of occurrence of the event has been satisfactorily isolated the resolution
method is executed. The actions taken during event resolution vary greatly with the type of
event. Some kinds of events cause changes in the values of the state variables such as velo-
cities. For example, collision events are resolved by formulating a set of impulse-
momentum equations in a manner analogous to the formulation of the basic motion con-
straints. Solving this system yields instantaneous changes in velocities. Other types of
events lead to reformulation of the set of motion constraints. Events corresponding to for-
mation or breakage of temporary contacts are resolved by the addition or deletion of con-
straint equations.

Event resolution often leads to discontinuous changes in the values of state variables.
The resolution method may be directly responsible for the discontinuity, as with collision
resolution, or it may indirectly lead to a discontinuity by modifying the motion constraints.
In either case, discontinuities can cause serious problems for some integration schemes. In
general, techniques that rely on a state history are most sensitive to abrupt changes in state
variables. To avoid the large errors that can result from violation of continuity assumptions,
Newton alerts the integrator to the possible occurrence of discontinuities. The integrator
responds by starting the integration process over again using the last consistent state as the
initial condition. As with the first steps of the simulation, a fourth-order Runge Kutta
method is used until a sufficient numbers of steps have been computed to switch to a fourth
order Adams-Moulton method.
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4. Control Programming
Goal-directed behavior is achieved by the controlled application of forces and torques.

Virtual actuators must be introduced as the sources for these forces and torques. A virtual
actuator applies a force or torque to a primitive object or about a hinge connecting a pair
objects. We usually think of a virtual actuator as modeling a physical device such as an
electric motor, a muscle, or a jet engine.

The simulator must provide a means to define control programs that determine the
forces and torques to be applied by virtual actuators. As a simple example of a virtual
actuator, we consider a single particle to which we attach a control force. A control pro-
gram might specify a force function that will cause the particle to move along some desired
trajectory. At each integration step, it is the control program's responsibility to assure that
the actuator force is defined. The manner in which the control program determines actua-
tor output has a critical influence on the veracity of the simulation and on the nature of the
control functions that can be expressed. This section presents two alternatives for structur-
ing the interface between control programs and other components of the simulator.

4.1. Loosely coupled control
One way to introduce control into a simulation is to require the programmer to define

control processes that specify actuator outputs at each step of the integration cycle. The
control processes must have access to state information and must assign values to actuators
outputs contingent upon the current state. To prevent conflicting specification by two con-
trol processes and circular dependencies, the privilege of setting an actuator might be res-
tricted to a single control process designated as owner of the actuator. Alternatively, multi-
ple processes may be permitted to specify component forces that are summed to determine
the total output of the actuator.

In this framework, the control component operates on the fringe of the integration
cycle. Control processes are executed between integration steps. From the perspective of a
control program, the dynamic model is part of a world that can be observed and influenced
only by applying forces in reaction to changes in state variables. The only aspects of the
model that can be directly specified by the control routines are actuator outputs.

From the perspective of the integrator, control forces are treated as constants supplied
by an external agent. In contrast, other second order quantities such as accelerations and
hinge constraint forces are treated as unknowns to be determined by solving the motion
equations.

The loosely coupled control regime emulates the relationship between control and
mechanics in actual devices. To illustrate a loose coupling between the control and
mechanical aspects of the simulation, we consider a one-dimensional particle actuated by a
single control force. The components of the simulation are shown diagrammatically in Fig.
2.a. The position of the particle is given by x, the velocity by i, and the acceleration by x.
The motion of the particle is governed by a single motion equation:

f + mg = mx (9)

where,

f is the control force applied by the actuator,
m is the mass of the particle, and
g is the acceleration due to gravity.
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position

velocity

Xd + d

The Control Program The Simulated World

(a) Loosely Coupled Control

0 = mie - mg -f

0 = Kp(x - xd) + K,(xt -1d) - i

The Simulated World

(b) Tightly Coupled Control

Fig. 2. The relationship between the control and analysis components of a simulator.

Given values for m and g and f, the integrator iteratively solves (9) to determine x. A con-
trol program supplies the value for f. To move the particle to a desired position xd, our
control program sets f according to the a proportional, derivative control law:

f =Kp(Xd-X)+K,(id-.) (10)

There are several advantages to separating control processes from the process that
enforces motion constraints due to physical properties. Transfer to applications is straight-
forward because the organization of the simulation emulates the physical control problem.
The state information used in the simulated control program is also available in the physical
control problem. The sensitivity to measurement errors can be tested in simulation by dis-
turbing the values passed to the control component. Another advantage of loose coupling is
that it is simple to enforce realistic limits on actuator output. The magnitude of the force
determined by the control program can be tested to ensure that a plausible force is to be
applied. If the force exceeds reasonable limits it may be clipped, the actuator may be dis-
abled, or the event may be handled in some other predetermined fashion.
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The disadvantage of loose coupling is that the controllable joint torques are usually
related in only distant and complex ways to the behavior we want to achieve. Because of
the physical coupling between objects in contact, a single force can influence the motioli of
many objects. It is very difficult to achieve even simple, controlled movements for articu-
lated objects.

4.2. Tightly coupled control
In this approach control processes specify constraints on dynamic quantities. Control

constraint equations are treated the same as constraint equations due to deterministic physi-
cal phenomena. As the simulation progresses, control processes add and delete constraint
equations in response to changing circumstances.

The principal advantage of this approach is that desired quantities can be directly con-
strained. In the tightly coupled control regime, the one dimensional particle can be con-
trolled by defining a new dynamic constraint equation that constrains the acceleration of the
particle. As shown diagrammatically in Fig. 2.b, the control equation is combined with the
dynamic equation derived from mechanical constraints. The system of equations is solved
to determine the force required to satisfy the acceleration constraint.

Newton supports equation editing at the level of user-defined functions. The set of
dynamic equations derived by the system can be augmented by linear, differential equations
constraining second order quantities. There is no distinction between constraints arising
from mechanical considerations and constraints due to control. The system of equations can
include arbitrary linear constraints on accelerations, forces, and torques, and it may include
references to arbitrary Lisp functions. Equations may be later retracted. A unique name is
assigned to each equation when it is created to permit reference to it. Constraints may be
expressed as vector or scalar equations.

Constraint equations can be defined to control composite quantities. For example, the
acceleration of the center of mass of an articulated object could be constrained to influence
the overall motion of an object. There must exist a set of actuators to account for the force
and torque required to achieve the desired motion. If no actuator values can cause the
acceleration, then the set of constraints is inconsistent and the equation solver will be unable
to find a solution satisfying the constraints.

This points to one of the disadvantages of this less restrictive form of control program-
ming. As is sometimes the case with constraint programming, it is easy to create incon-
sistent sets of constraints. Further, it is difficult to resolve the inconsistency to achieve the
desired behavior. Inconsistencies of this sort were not possible in the loosely coupled
approach. Because control routines could only set actuator forces, the control requirements
were necessily feasible, discounting possible limits on the magnitude of actuator output.
Control routines could not cause the motion equations to be inconsistent. The more funda-
mental problem exists under both approaches, however. If the actuators are incapable of
producing the desired motion, they will be incapable under any control regime. The limits
of controllability are just manifested in different ways.

The freedom allowed to the programmer in the tightly coupled control regime can lead
to other significant problems. In order to solve the constraint equations, the functions refer-
enced in the control equations must be evaluated. If these functions are not restricted, then
evaluation can disrupt the integrity of the constraint network. Functions may add or delete
constraint equations as side effects during the solution process. The order in which func-
tions are executed may have a radical influence on the results. The entire solution may be
corrupted by modifying the underlying constraint network.
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Side effects are not the only serious problem that can be caused by the introduction of
user-defined functions in the constraint network. Functions that are discontinuous in the
state variables can also lead to trouble. Many integration methods assume that quantities
vary smoothly over time. Violations of this continuity assumption can lead to significant
errors.

By placing restrictions on the functions referenced in constraint equations, we can
preserve the integrity of the simulation. All functions must be continuous functions of state
variables. Further, no side effects can occur within these functions.

The logic of the control program must be embedded in the event programming facility
described above. At the beginning of the simulation, a user-defined initialization function
adds an initial set of constraint equations to the constraint network and activates a collection
of control events. Associated with each control event is a predicate that causes the event to
be triggered. When, during the course of an integration step, an event is triggered, the event
time is isolated and then the event is resolved.

As part of the event resolution, control constraint equations can be added to or deleted
from the constraint network. To assure that the integrity of the physical model is not
compromised, user-defined events should be allowed to add and delete only user-defined
constraint equations.

The integrator must be notified when event resolution may lead to discontinuous in the
values of state variables. The integrator can then restart the integration process using the
values from the last state as initial values.

5. An Example: Hopping
We illustrate the constraint-based control method with a planar simulation of a hopping

robot. The robot model, pictured in Fig. 3.a, consists of three links hinged with two revolute
joints. The model emulates the torso, upper leg, and lower leg of an anthropoid. Actuators
are located at joints labeled knee and hip. Repetitive hopping is controlled by a state depen-
dent series of constraint equations. The event mechanism of Newton is used both to manage
constraint equation editing and to model the mechanical interaction between the hopper and
the ground.

Storso A torso

upper leg 
hip

leg
lower leg

(a) (b)

I3. Two hopper designs. The model on the left emulates an anthropoid. The
model on the right is an idealization of the CMU one-legged hopper.
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5.1 A Strategy for Hopping
Our control program for hopping is adapted from the three-part strategy used by

Raib,t to control the CMU hopper [10,11,22,23]. In an elegant series of experiments.
Raibert and colleagues at Carnegie Mellon University (CMU) designed, built, and tested a
variety of legged robots. The basic CMU hopper is illustrated in Fig. 3.b. It consisted of a
large chassis connected to a telescoping leg with a revolute joint. An air cylinder in the leg
gave it springiness along its longitudinal axis and provided a means of act'uation. A second
actuator could pivot the leg with respect to the trunk at the hip joint.

Raibert found that a wide variety of hoppers could be controlled with a simple, three-
part control strategy. Control was decomposed into three subproblems:

(1) Posture Maintenance,
(2) Hop Height Adjustment, and
(3) Forward Speed Regulation.

It is immediately apparent that (for a planar hopper) the three kinematic parameters to be
controlled outnumber the two contr lable degrees of freedom. The problem was overcome
by allocating actuators to control variables for a portion of time during each hop. The
hopper cycled between stance, when the foot was in contact with the ground, and flight,
when the hopper traveled ballistically through the air. A stable posture was maintained by
adjusting the hip angle during stance to keep the trunk horizontal. Horizontal height was
controlled by the leg actuator during stance. The leg acted as a spring, absorbing energy as
it compressed during the first half of the stance interval and returning energy to the hopper
as it expanding during the second half of the stance interval. The leg actuator injected
sufficient energy during each stance period to compensate for energy lost during the colli-
sion with the ground.

Forward velocity was not explicitly controlled during stance. To achieve a constant
forward velocity, the foot position was adjusted during the previous period of flight so that
there would be no net acceleration over the stance period. Raibert observed that if the foot
is placed such that the forward motion of the hopper will leave its center of mass directly
over the foot when the leg spring is maximally compressed, then there will be an odd sym-
metry in the horizontal forces acting on the body over the stance interval. Backward
acceleration in the first half of the stance period will be counterbalanced by forward
acceleration during the second half period. The position of the foot, relative to the trunk at
first contact, which led to this symmetric motion was called the neutral point. The hip
actuator was devoted to control of leg orientation during the flight phase. Controlled
acceleration and deceleration was achieved by displacing the foot position from the neutral
point.

The CMU control strategy cannot be directly applied to the anthropomorphic hopper.
Through a clever design, the CMU hopper decouples the posture and vertical velocity con-
trol variables during stance. Each control variable could be indepenJently controlled by a
separate actuator. The hip torque used to stabilize the orientation of the trunk did not
influence forces along the leg and the force applied by the leg actuator to control vertical
motion did not cause the trunk to rotate because itq line of motion passed through the hip
and center of mass of the trunk. No similar decoupling exists for the anthropomorphic
hopper. The anthropomorphic robot must generate upward linear momentum in a coordi-
nated push by the knee and hip actuators. The hopper's body must unfold from a crouched
position during the second half of the stance period.

The structure of the anthropomorphic hopper forces us to redefine the control vari-
ables. Since trunk rotation is required to hop, stable posture cannot be maintained by keep-
ing the trunk horizontal. Instead of trunk orientation, we focus on the angular momentum of
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the hopper as a criterion for stability. Angular moment.n, is preserved during the period of
flight following liftoff If, during flight, the body rt.ates too far in either the forward or
backward direction, limitaiions on the range of joint angles can prevent placement of the
foot underneath the body and lead to an uncomfortable collision between the torso and
ground. In animal hopping, the knee and hip joints dissipate and absorb kinetic energy
when th~iing body lands. The three-part control strategy for hopping uses the hopper's
leg in a Thiilar way. To accomplish this, it is critical to keep the leg underneath the torso.
Our goal is to leave the ground with a desired velocity, and with no angular momentum.

5.2 Control of One Hop
Our approach concentrates on the interaction between the object and its surroundings

at points of contact. It is only through reactions at contact points that a hopper can alter its
momenta. The nature of contact reations places strict constraints on the dynamics of con-
trol problems. Our control program is expressed as dynamic constraints on the external
forces and torques applied to the hopper by pushing against surfaces in contact.

The free-body diagram for the robot is shown in Fig. 4.

MEG= r x fc

f c

FI&. 4. The hopper free-body diagram.

Two external forces act on the composite robot body. The weight, m g, acts through the
center of mass and is directed downward along the -? axis of the inertial coordinate system.
"be other force, fr, represents the reaction force of the ground and acts at the point of con-
tact.

The overall instantaneous motion of the composite body is determined by the sum of
external forces and moments acting on the body about G. The resultant force on the body,
ft is the sum the force caused by gravity and the reaction force:

MSG =ft =mg+f. (11

where aG is the inertial acceleration of the center of mass. Since the force of gravity passes
through the center of maw, the only moment on the body about the mass center is that
caused by the reaction force at the point of contact:
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ft o =-MG = rxfc, (12)

where,

MG is the resultant external moment about the center of mass of the composite body
and

fiG is the time-derivative of the angular momentum of the body about the center of
mass, HG.

The overall instantaneous motion of the cor'rosite body during stance is completely deter-
mined by (11) and (12).

We will call the vector r the virtual leg [22,24]. The virtual leg determines the rela-
tionship between the contact force and moment on the body about the mass center. Note
that this relationship is independent of the internal structure of the composite body. The vir-
tual leg allows us to treat an arbitrary body as a lumped mass connected to the ground by a
massless leg. By expressing the equations of motion in terms of the contact force, we can
ignore the actuator forces and torques that contribute to the reaction force. This permits us
to focus on the interaction between the body and its environment and will allow us to
express control processes independent of device actuation or body structure.

The contact force is decomposed into components parallel and orthogonal to the virtual
leg. We introduce constraint equations to control the two components of the contact force.
The component of the contact force parallel to r is constrained to behave as a linear spring
along the leg axis. Hence, the spring force may be expressed as

r
= k( I r I-r,) (13)

Ir

where I • is the vector norm operator, k, denotes the spring stiffness, and the scalar G is
the resting length of the spring.

The component of the contact force perpendicular to the virtual leg is used to control
the resultant moment about G acting on the body. The value of this moment is constrained
to reduce the difference between the angular momentum of the body about its mass center,
HG, and the desired angular momentum of the body about its mass center, fHG:

MG = rxfc = kh(Ik -HG). (14)

The constant of proportionality, kh, determines the rate at which corrections are made. The
angular momentum about the mass center of an articulated body consisting of n rigid links
is defined by

HO [1 Wi;a + (C, X M, V, (15)

where

11 is the inertia tensor of link i about its center of mass,
a, is the angular velocity of link i,
mi is the mass of link i,
vi  is the velocity of the center of mass of link i, and
ej is the vector from the center of mass of the composite

body to the center of mass of link i.
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The two constraint equations (13) and (14) have a simple geometric interpretation. The
component of force along the virtual leg acts as a spring pushing the body away from the
ground. The component orthogonal to the virtual leg moderates the direction of the push
and applies a torque to the body about the mass center. If the pushing is directed to the left
of the center of mass in Fig. 4, a clockwise torque is applied to the body.

5.3 Control of a Hopping Sequence
A series of hops begins with the hopper positioned above the ground surface with all

body segments vertical. As the hopper falls, the foot is positioned for the first hop. The
desired foot position was determined using Raibert's approximation of the neutral point.
The virtual leg is also shortened as it falls to avoid landing in a singular configuration. An
event is activated to detect contact between the foot and ground. The event is triggered
when the foot penetrates the surface of the ground. The isolation predicate for the contact
event specifies the acceptable error in the time of first contact. When the time of contact
has been satisfactorily isolated the event is resolved by:

(1) Solving impact equations for an inelastic collision between the foot and ground
and adjusting velocities of the hopper's limbs accordingly,I

(2) Deleting the control constraint equations used to position the foot and adding con-
straint equations for stance,

(3) Creating a revolute hinge between the lower leg and the ground,
(4) Deactivating the contact event and activating an event to detect liftoft and
(5) Alerting the simulator to the possible discontinuities in dynamic quantities result-

ing from the collision and changes in control equations.
During the stance period that follows, constraint equations (13) and (14) control the force
along the virtual leg and the moment on the hopper, respectively. Energy is injected by gra-
dually increasing the resting length of the virtual leg to compensate for energy lost at impact
[25].

The simulation continues uninterrupted until the constraint force at the temporary
hinge with the ground becomes tensile. At this point the liftoff event is triggered. The isola-
tion predicate accepts the time of first detection as the time of liftoff The liftoff event is
resolved by:

(1) Breaking the hinge between the lower leg and the ground,
(2) Deleting the control constraint equations for stance and adding the foot position-

ing constraint equations,
(3) Deactivating the liftoff event and activating the contact event to detect the next

touchdown,
(4) Alerting the simulator to the possible discontinuities in dynamic quantities result-

ing from the collision and changes in control equations.
This begins the hopping cycle over again.

The process outlined above was slightly modified to avoid premature liftoff and touch-
down. Brief transition periods were inserted to allow loading of the leg at touchdown and to
gain height after liftof When the leg made first contact with the ground the control

1 The impuls-momentum equatiom are automatically derived from the geometry of the foot-
ground collision and the dynamics of the hopper.
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equations for stance were instantiated. However, the event to detect liftoff was activated
only after a short waiting period. This allowed the contact force to become sufficiently
large that small numeric errors would not cause the liftoff event to trigger prematurely. The
delay at liftoff was needed to so that the foot would not touch the ground as it was swung
forward for the next touchdown. The knee and hip joints were held in place for a short
period as the hopper gained height.

One hop from a simulation of the anthropomorphic hopper is shown in Fig. 5.a. An
important advantage of our formulation is that the constraints on the contact force during
stance apply to a wide variety of different hoppers. To demonstrate this device indepen-
dence, we simulated hopping with a model similar to the CMU hopper. A hop from a simu-
lation of the CMU hopper is shown in Fig. 5.b. The control programs for the two hoppers
differed only in the adjustment of leg lengths during flight.

6. Beyond Basic Hopping
Constraint-based control programming permits a style of programming comparable to

object-level programs for robot manipulation. An object-level language specifies robot
operations by defining the desired state of the object to be manipulated
[1,15,17,20,21,27,32]. The robot actions required to bring about the necessary changes to
the object are determined by lower levels of the robot system. In a similar way, the contact
constraints used to control the hopper during stance treat the hopper as an object to be
pushed or spun. The actuator values required to achieve a desired external force or torque
are determined by lower level processes.

The usefulness of contact constraint programming goes beyond basic hopping. The
one-legged robot considered above has contact with the ground during stance at a single
point. The point contact permits only a single constraint force to be applied to the hopper.
For this reason, the external force and moment on the hopper are intrinsically coupled.
More complex interactions afford a rich set of alternatives for control required to achieve
many behaviors. For example, a hopper with a sizable foot touching the ground shares a
plane of contact with the support surface. With planar contact, the hopper can indepen-
dently control the external force and moment during stance. We've demonstrated the
increased controllability by simulating a flip with no change in horizontal velocity. Because
the external force and moment are decoupled, the hopper can jump vertically with sufficient
momentum to rotate through a complete circle. Frames from an animation of a flip are
shown in Fig. 6. We believe that the contact constraint analysis will prove useful in under-
standing a wide variety of locomotion tasks.

The difficulty in controlling the motion of complex, articulated figures has impeded
progress in physically-based animation. We believe the constraint-based control paradigm
offers a rich, expressive tool for directing purposeful actions of mechanical models.
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NOTE to Publisher: The captions for the color photographs are included
below. The pictures are idenfed as .Fig.5 Fig. 5.b, and Fig. 6 in the
text and in the Captins. The photographs are labeled on back with the
correct Fig. number.

Fig. 5. Animation sequences for two hoppers. In both figures, a series of frames from
a single hop is shown. The hopper in the 5.a is articulated like a human with links
similar to the torso, upper leg, and lower leg. The hopper in the 5.b modeled after
the one-legged CMU hopper.

Fig. 6. Simulation results for the human-like hopper in surface contact with the ground
during stance. The surface contact enables foward velocity and angular momentum
to be decoupled. This allows the hopper to jump straight upward with sufficient
angular momentum to flp.



-p

'3)
'S

a'
a.

/

3.

/
'I)

U-


